

HyperExpan: Taxonomy Expansion with Hyperbolic Representation Learning

Mingyu Derek Ma, Muhao Chen*, Te-Lin Wu*, Nanyun (Violet) Peng

What is a taxonomy

Online catalog taxonomy

Scientific taxonomy

Wang et al., 21; Mao et al., KDD'20; Yu et al., KDD'20

Introduction

- Taxonomy curation is expensive and suffers from limited coverage
- Our task: taxonomy expansion
 - Attach new concept to an existing taxonomy

Introduction

- Taxonomy curation is expensive and suffers from limited coverage
- Our task: taxonomy expansion
 - Attach new concept to an existing taxonomy
- Taxonomy size grows exponentially
- Hyperbolic space can better capture lower-level concepts with better expressiveness

HyperExpan

A taxonomy expansion framework based on hyperbolic representation learning

Better preserves the taxonomical structure in a **more expressive hyperbolic space**

Characterizes concepts by exploiting sparse **neighborhood information**

Improves inference precision and generalizability by leveraging **pretrained distributional features**

Model design

Query concept grill ●

Model design

Query concept grill

Step 1: initial concept features

Step 3: matching module

Learning and inference

- Training
 - Self-supervision: positive + negative pairs

• Loss function $\mathcal{L}(\Theta) = -\frac{1}{|\mathbb{X}|} \sum_{\mathbf{X}_i \in \mathbb{X}} \left[\log \frac{f(n_p, n_c)}{\sum_{\langle n_j, n_c \rangle \in \mathbf{X}_i} f(n_j, n_c)} \right]$

Learning and inference

• Inference

Query node pending to attach

🔵 grill

Calculate matching

Ranking list

cook roast fry change integrity

. . .

Experiments

Model	MR↓	MRR ↑	Rec @1	all % @5	6↑ @10	Prec @1	cision @5	%↑ @10	MR↓	MRR ↑	Re @1	call % @5	%↑ @10	Prec @1	ision @5	% ↑ @10
	W	ordNet-	Verb (C	Candi	idates	#: 11	<mark>,936</mark>)		Wo	ordNet-N	loun (Cand	idates	#: 8 1,	,073)	
ARBORIST TaxoExpan TMN	608.7 502.8 465.0	0.280 0.439 0.479	10.8 2 12.4 2 14.9 3	24.0 28.2 31.6	27.7 35.2 37.9	6.7 12.4 13.2	4.8 5.6 6.4	3.2 3.5 4.0	1095.1 649.6 501.0	0.435 0.562 0.595	16.5 19.7 20.7	28.4 38.2 40.5	34.1 47.4 50.1	16.8 20.1 21.1	5.8 7.8 8.3	3.5 4.8 5.1
GCN GAT	456.9 471.7	0.445 0.449	10.9 2 11.6 2	27.2 28.7	34.5 35.6	10.9 11.6	5.4 5.7	3.5 3.6	684.1 640.7	0.563 0.585	20.9 22.3	39.8 40.9	47.3 49.7	21.3 22.7	8.1 8.3	4.8 5.1
HyperExpan	400.8	0.517	15.0 3	32.8	42.7	15.0	6.6	4.3	573.6	0.607	23.9	42.1	52.5	24.4	8.6	5.4
		MAG-P	SY (Ca	ndid	ates #	: 21,1	87)			MAG-C	S (Ca	ndida	tes #:	22,75	4)	
ARBORIST TaxoExpan TMN	119.9 68.5 73.0	0.722 0.775 0.781	21.0 4 26.1 5 25.8 5	48.4 56.9 58.7	62.9 69.5 70.5	25.8 33.8 33.4	12.5 14.7 15.2	7.7 9.0 9.1	284.7 189.8 160.5	0.602 0.661 0.667	15.1 15.9 16.0	38.9 42.9 43.1	49.4 55.4 56.3	24.6 25.8 26.0	12.6 13.9 14.0	8.0 9.0 9.1
GCN GAT	51.4 48.6	0.742 0.751	23.8 5 23.6 5	52.5 52.4	64.3 65.8	30.8 30.5	13.6 13.5	7.4 8.5	90.3 92.2	0.653 0.676	14.5 15.9	39.6 41.9	53.3 56.0	23.6 25.9	12.9 13.6	8.7 9.1
HYPEREXPAN	38.4	0.827	28.8	53.0	75.3	37.2	16.3	9.7	74.4	0.689	16.1	44.6	58.0	26.1	14.5	9.4

- HyperExpan get large performance increase compared with GCN and GAT due to expressiveness of the hyperbolic space
- HyperExpan outperforms previous SOTA TMN

Ablation study

Model	MRR ↑	Rec ↑ @10	Prec ↑ @1
w/o trainable curvature	0.490	40.8	14.4
anchor + parent + children #4 + anchor's ancestors #5 + anchor's descendants #6 + anchor's siblings	0.506 0.505 0.517 0.502	42.2 42.5 42.7 41.7	15.0 15.5 15.0 14.5
w/o Relative Pos Emb w/o Absolute Pos Emb w/o both Positional Emb	0.497 0.503 0.482	40.8 41.2 38.8	13.0 14.3 12.5
HyperExpan	0.517	42.7	15.0

MRR is scaled by 10, i/o means instead of, w/o means without

- Trainable curvature leads fine-grained manifold setting
- Adding descendant or ancestors of the anchor node is helpful, anchor's sibling nodes are not
- Positional embeddings are helpful

Conclusion

- HyperExpan: a taxonomy expansion model which better preserves the taxonomical structure in an expressive hyperbolic space
- Use HGNN to incorporate neighborhood information and positional features of concepts
- Experimental results show that HyperExpan performs better than its Euclidean counterparts and achieves the state-of-the-art

Thank You

HyperExpan: Taxonomy Expansion with Hyperbolic Representation Learning

Mingyu Derek Ma, Muhao Chen*, Te-Lin Wu*, Nanyun (Violet) Peng

Code available at: github.com/PlusLabNLP/HyperExpan