UCLA samueli

Computer Science

CS31 Week 7 Discussion

Fall 2021, Section 1C and 2A
Mingyu Derek Ma mdma@ucla.edu

Thanks Muhao Chen and Rosa Garza for their shared content

https://derek.ma/cs31 for slides and other discussion materials

https://derek.ma/cs31

Reminder

e Project 5, Monday Nov 15, 11pm
e Mid-term 2 Nov 16

Project 4 Feedback

Comment your program logic, especially for complicated functions
Need to provide concrete test cases, rather than high-level design thoughts
about test cases

e Need to have test cases for all functions

e Need to have brief reason for your test cases

Project 5 Suggestions

e Variable-length array is not allowed

o g++ extension of variable-length arrays won’t compile under g31
e All arrays must have bounds known at the compile time

Midterm 2

e Cover material up to C strings
o No pointers, no structs, no classes

Pointer

e Pointer: a variable that holds the address of another variable in the memory

e Memory like boxes that can be used to save information

e FEach box has an address T — “

e Example: for a 32-bit machine alue
Ox7ffeefbff550 20
Ox7ffeefbff554
Ox7ffeefbff558 2
Ox7ffeefbff55c 10

Ox7ffeefbff560 address 0x..550

Pointer

e Declare a pointer
o <data_type> * <pointer_name> [=<initialization>];
<data_type>: what type of value is pointed by the pointer

@)

o Examples:

o int*ptr;

o double *p, *q;

o double *p, *q, r;

Pointer

e Point a pointer to a regular variable
o &<variable_name>

o Example
m inta;
m int *ptr = &a;

e Get the value at the address indicated by the pointer
o *<pointer_name>
o Example
m intb ="*ptr,
e *and & are two memory operations

* operator (dereference)

e Using * before an already-initialized pointer to dereference, i.e. to get the
value stored at this address

int a = 5, xp;

cout << p << endl; 5
cout << *p << endl;

* operator (dereference)

double x, vy; // normal double variables

double *p; // a pointer to a double variable
X = D.Dj

y = -10.0;

p = &X; // assign x's memory address to p
cout << "p: " << p << endl;

cout << "kp: " << *p << endl;

p = &y; // assign y's memory address to p
cout << "p: " << p << endl;

cout << "xkp: " << *p << endl;

p:
*p
p:

*p

Ox16fdff358
5.5

ox16fdff350
-10

& operator (reference)

e Used before a variable to get the address of a variable
e Inverted operator of *

ant a = 5, %p; QX16fdff350
p = &aj 5

cout << p << endl;

cout << xp << endl; S

cout << a << endl; 0x16fdff350
cout << &a << endl;

cout << *&a << endl; // same as a o

cout << *&%*&a << endl; // same as a 5

Does a pointer have an address?

e Pointer is also a kind of variable, and stored in the memory

int a = 5, *p;

p = &a;

cout << &a << endl;
cout << &p << endl;
cout << *&p << endl;
cout << **&p << endl;

p: 001EF800 O001EF804 001EF808 001EF80C
a:.5
10FE3F30 10FE3F34 10FE3F38 10FE3F3C

p: 001EF800

11

Does a pointer have an address?

e Pointer is also a kind of variable, and stored in the memory

int a = 5, *p;

p = &a;

cout << &a << endl;
cout << &p << endl;
cout << *&p << endl;
cout << **&p << endl;

p: 001EF800 001EF804

Output:

001EF800 <- a’s address

10FE3F38 <- p’s address

001EF800 <- wvalue at p’s address
5 <- value at the *&p address

001EF808 001EF80C

a:.5

10FE3F30 10FE3F34

10FE3F38 10FE3F3C

p: 001EF800

12

Pointers of pointers

e Pointer is a type of variable, so a pointer can point to another pointer

Ox7fff69a5dc04 a
int a = 5; \\\—\\\
int xptr = &a; 0x7fff69a5dbf8
int *xptr2ptr = &ptr; _ ol

Ox7fff643b9bf0

ptr2ptr

13

Size of a pointer

e 4 bytes or 8 bytes

o Depends on your system environment (32-bit system or 64-bit system)
e Same size regardless of what type of variable it points to

int *p=&a;
double *p2=&b;

p: 001EF800 O001EF804

p2: 001EF808 O0O01EF80C

inta: 5 double b: 3.14159265359
10FE3F30 10FE3F34 10FE3F38 10FE3F3C
p2: 01EF808 p: 001EF800

—

Both pointers use 4-byte spaces
to store a 4-byte address

14

"Move” a pointer

e Perform arithmetic operations on a pointer to point to other address

int al[5] = {1,2,3,4,5}; 1
int xp = a; // or p=&al0];
cout << xp << endl; li

cout << x(p+3) << endl;

p++; 2

cout << *xp << endl;

"Move” a pointer

/& operator has higher priority than regular arithmetic operations (/ % + -)
Priority of ++ is higher than * (+ << * << ++)

e More info: C++ built-in operators, precedence, and associativity | Microsoft
Docs

int al[2] = {0, 100};

int xp = &al[0];

cout << x(p + 1) << endl; // give us 100
cout << xp + 1 << endl; // give us 1

16

https://docs.microsoft.com/en-us/cpp/cpp/cpp-built-in-operators-precedence-and-associativity?view=msvc-170

Example: invert a C-string using pointers

char s[]="abcdefg";

char t[1001];

char *p = &s[strlen(s) - 1]1; // point p to the last char of s

char xq = &t[0]; // point g to the first char of t

while (p >= &s[@]){ // while p doesn't go before the first char of s
xq = xp; // get the content pointed by p to that of g
p——; // p moves left
q++; // g moves right

o |gfedcba

cout << t << endl;

s a b c d e f g \0

t 9

Null pointer

e A null pointer indicates the pointer does not point to anything (point to 0)

int *p;
p =0; // style 1
p = NULL; // style 2

P

nullptr; // style 3

18

Array is a kind of pointer

e Array is a fixed pointer that points to the first element of the array
o intal] ={1,2,3,4,5};
o aisthe same as &a[0]
o *(a+1) is equivalent to a[1]

/

a

19

Thank You

